**<u>Step 1</u>** – Get the absolute value expression by itself **on the left side** of the inequality.

*Ex.*  $|4x + 7| < 19 \rightarrow$  This is ready for Step 2!

*Ex.*  $14 \le |x - 5| \rightarrow$  This is **not ready** for Step 2! Let's just reverse the whole thing, and we'll get...

 $|x-5| \ge 14$  which is ready for Step 2.

| <i>Ex.</i> $3 x - 2  + 4 > 22$ | → This is <b>not ready</b> for Step 2! Subtract 4 | SO |
|--------------------------------|---------------------------------------------------|----|
| 3 x-2  > 18                    | Divide by 3 to get                                |    |
| x - 2  > 6                     | Now it is ready for Step 2.                       |    |

 $Ex. -11 \le -|2x + 1| \Rightarrow$  This is not ready for Step 2! Multiply by -1. $11 \ge |2x + 1|$ Reverse the whole thing to get $|2x + 1| \le 11$ Now it is ready for Step 2.

**<u>Step 2</u>** – Check the number **on the right side** of the inequality.

- If it is positive or 0, then you have more solving to do and you can go to **Step 3**.
- If it is negative, then you need to do some thinking...
  - a. Is your inequality like  $|x| > \bigoplus$  (or  $|x| \ge \bigoplus$ )? The answer must be **all real numbers** (All real numbers have absolute values that are positive or zero and that's greater than any negative number!).
  - b. Is your inequality like |x| < -4 (or  $|x| \le -4$ )? The answer must be **no solution** (if you are a positive number or zero, there's no way you can be less than or equal to a negative number!).

Let's see some examples...

*Ex.*  $\left|\frac{2}{3}x - 8\right| > -2 \rightarrow$  All absolute values are > -2, so the solution is all real numbers.

*Ex.*  $|10x + 15| \le -20 \Rightarrow$  It is impossible for an absolute value to be  $\le -20$ , so there is **no solution**.

Page 3

Is your inequality like |x| ≥ 0? Aren't all absolute values ≥ 0? It doesn't really matter what is inside the absolute value expression – when you are done taking its absolute value, you will have a number that is ≥ 0. So the solution is all real numbers.

*Ex.*  $\left|\frac{x}{3} - 27\right| \ge 0 \rightarrow$  It doesn't matter what you put in for *x*. When you get around to finding an absolute value, your answer will be  $\ge 0$ . The solution is **all real numbers**.



 Is your inequality like |x| > 0? The only place you have a problem is where your expression actually does = 0. Find out when that happens and eliminate it from your answer.

*Ex.*  $\left|\frac{x}{4} - 12\right| > 0 \rightarrow$  Your only problem is when  $\frac{x}{4} - 12 = 0$ . Solve for x to discover that this happens when x = 48. That's the only number x can't be. Write your answer as  $x \neq 48$  or all real numbers except x = 48.



 Is your inequality like |x| ≤ 0? The only place it really works is when your expression *does* = 0. Find out when that happens and that is your solution.

*Ex.*  $\left|\frac{x}{5} + 20\right| \le 0$   $\rightarrow$  The left side will never end up < 0, but it is possible to = 0. Solve  $\frac{x}{5} + 20 = 0$  to determine when that happens, and it's only when x = -100. Write your answer as x = -100.



Is your inequality like |x| < 0? This will *never* happen – absolute values are never negative and those are the only real numbers less than 0.

*Ex.*  $\left|\frac{x}{2} - 8\right| < 0 \rightarrow$  You can't have an absolute value that is < 0, so your answer will be **no solution**.



<u>Step 4</u> – If you're here, then you have the absolute value expression by itself on the **left** side and positive number by itself on the **right** side. Let's analyze the appearance of your inequality...

• Is your inequality like |x| < 4 (or  $|x| \le 4$ )? We will turn this into a conjunction sANDwich! Make it look like this...



Ex.  $|4x + 7| < 19 \rightarrow$  this will become -19 < 4x + 7 < 19 -26 < 4x < 12  $-\frac{13}{2} < x < 3$  $-\frac{2}{6.5} \qquad 0 \qquad 3$ 



Any numbers you pick in the blue-colored parts of the graph will make the inequality true. • Is your inequality like  $|x| > \bigoplus$  (or  $|x| \ge \bigoplus$ )? We will turn this into a disjunction – two parts with "or" between them. Make it look like this...





Any numbers you pick in the blue-colored parts of the graph will make the inequality true.

0